taichi.lang.kernel_impl
#
- taichi.lang.kernel_impl.data_oriented(cls)#
Marks a class as Taichi compatible.
To allow for modularized code, Taichi provides this decorator so that Taichi kernels can be defined inside a class.
See also https://docs.taichi-lang.org/docs/odop
Example:
>>> @ti.data_oriented >>> class TiArray: >>> def __init__(self, n): >>> self.x = ti.field(ti.f32, shape=n) >>> >>> @ti.kernel >>> def inc(self): >>> for i in self.x: >>> self.x[i] += 1.0 >>> >>> a = TiArray(32) >>> a.inc()
- Parameters:
cls (Class) – the class to be decorated
- Returns:
The decorated class.
- taichi.lang.kernel_impl.func(fn, is_real_function=False)#
Marks a function as callable in Taichi-scope.
This decorator transforms a Python function into a Taichi one. Taichi will JIT compile it into native instructions.
- Parameters:
fn (Callable) – The Python function to be decorated
is_real_function (bool) – Whether the function is a real function
- Returns:
The decorated function
- Return type:
Callable
Example:
>>> @ti.func >>> def foo(x): >>> return x + 2 >>> >>> @ti.kernel >>> def run(): >>> print(foo(40)) # 42
- taichi.lang.kernel_impl.kernel(fn)#
Marks a function as a Taichi kernel.
A Taichi kernel is a function written in Python, and gets JIT compiled by Taichi into native CPU/GPU instructions (e.g. a series of CUDA kernels). The top-level
for
loops are automatically parallelized, and distributed to either a CPU thread pool or massively parallel GPUs.Kernel’s gradient kernel would be generated automatically by the AutoDiff system.
See also https://docs.taichi-lang.org/docs/syntax#kernel.
- Parameters:
fn (Callable) – the Python function to be decorated
- Returns:
The decorated function
- Return type:
Callable
Example:
>>> x = ti.field(ti.i32, shape=(4, 8)) >>> >>> @ti.kernel >>> def run(): >>> # Assigns all the elements of `x` in parallel. >>> for i in x: >>> x[i] = i
- taichi.lang.kernel_impl.pyfunc(fn)#
Marks a function as callable in both Taichi and Python scopes.
When called inside the Taichi scope, Taichi will JIT compile it into native instructions. Otherwise it will be invoked directly as a Python function.
See also
func()
.- Parameters:
fn (Callable) – The Python function to be decorated
- Returns:
The decorated function
- Return type:
Callable